Certificate in Finance ML Algorithmic Trading Strategies
-- ViewingNowThe Certificate in Finance ML Algorithmic Trading Strategies is a comprehensive course that equips learners with essential skills in machine learning and algorithmic trading. This program is crucial in today's financial industry, where machine learning and AI are revolutionizing trading strategies and decision-making processes.
3 269+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ร propos de ce cours
100% en ligne
Apprenez de n'importe oรน
Certificat partageable
Ajoutez ร votre profil LinkedIn
2 mois pour terminer
ร 2-3 heures par semaine
Commencez ร tout moment
Aucune pรฉriode d'attente
Dรฉtails du cours
โข Unit 1: Introduction to Finance and Machine Learning – This unit will cover the basics of finance and machine learning, setting the stage for the rest of the course. Topics include financial markets, instruments, and data analysis, as well as an overview of machine learning algorithms and techniques. โข Unit 2: Data Preprocessing for Financial Time Series – This unit will focus on preparing financial time series data for machine learning models. Topics include data cleaning, normalization, and feature engineering. โข Unit 3: Supervised Learning for Algorithmic Trading – This unit will cover supervised learning techniques for algorithmic trading, including regression, classification, and support vector machines. โข Unit 4: Unsupervised Learning for Algorithmic Trading – This unit will explore unsupervised learning techniques for algorithmic trading, such as clustering and dimensionality reduction. โข Unit 5: Reinforcement Learning for Algorithmic Trading – This unit will delve into reinforcement learning techniques for algorithmic trading, including Q-learning and policy gradients. โข Unit 6: Deep Learning for Algorithmic Trading – This unit will introduce deep learning techniques for algorithmic trading, including neural networks and convolutional neural networks. โข Unit 7: Portfolio Management and Risk Analysis – This unit will cover portfolio management and risk analysis techniques for algorithmic trading, including modern portfolio theory and value at risk. โข Unit 8: Backtesting and Evaluation of Trading Strategies – This unit will explore backtesting and evaluation techniques for algorithmic trading strategies, including statistical significance testing and walk-forward optimization. โข Unit 9: High-Frequency Trading and Co-location – This unit will cover high-frequency trading and co-location, including the technical and regulatory aspects of these practices. โข Unit 10: Ethics and Regulations in Algorithmic Trading – This unit will discuss the ethical and regulatory considerations of algorithmic trading, including market manipulation, insider trading, and regulatory compliance.
Parcours professionnel
Exigences d'admission
- Comprรฉhension de base de la matiรจre
- Maรฎtrise de la langue anglaise
- Accรจs ร l'ordinateur et ร Internet
- Compรฉtences informatiques de base
- Dรฉvouement pour terminer le cours
Aucune qualification formelle prรฉalable requise. Cours conรงu pour l'accessibilitรฉ.
Statut du cours
Ce cours fournit des connaissances et des compรฉtences pratiques pour le dรฉveloppement professionnel. Il est :
- Non accrรฉditรฉ par un organisme reconnu
- Non rรฉglementรฉ par une institution autorisรฉe
- Complรฉmentaire aux qualifications formelles
Vous recevrez un certificat de rรฉussite en terminant avec succรจs le cours.
Pourquoi les gens nous choisissent pour leur carriรจre
Chargement des avis...
Questions frรฉquemment posรฉes
Frais de cours
- 3-4 heures par semaine
- Livraison anticipรฉe du certificat
- Inscription ouverte - commencez quand vous voulez
- 2-3 heures par semaine
- Livraison rรฉguliรจre du certificat
- Inscription ouverte - commencez quand vous voulez
- Accรจs complet au cours
- Certificat numรฉrique
- Supports de cours
Obtenir des informations sur le cours
Payer en tant qu'entreprise
Demandez une facture pour que votre entreprise paie ce cours.
Payer par FactureObtenir un certificat de carriรจre