Professional Certificate in Advanced Evaluation Essentials
-- viendo ahoraThe Professional Certificate in Advanced Evaluation Essentials is a comprehensive course designed to equip learners with critical skills in evaluation and strategic decision-making. This program is crucial in today's data-driven world, where the ability to analyze and interpret complex information is highly valued.
5.689+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
Acerca de este curso
HundredPercentOnline
LearnFromAnywhere
ShareableCertificate
AddToLinkedIn
TwoMonthsToComplete
AtTwoThreeHoursAWeek
StartAnytime
Sin perรญodo de espera
Detalles del Curso
โข Advanced Evaluation Metrics: This unit will cover the various advanced evaluation metrics such as Precision@k, Recall@k, F1 score, ROC-AUC, Average Precision, and Log Loss.
โข Evaluation Methodologies: This unit will focus on different evaluation methodologies like cross-validation, bootstrapping, and A/B testing. It will also cover various bias and variance issues in model evaluation.
โข Evaluation Tools and Libraries: This unit will introduce different evaluation tools and libraries such as Scikit-learn, TensorFlow, Keras, and PyTorch. It will cover how to use these tools to evaluate models and interpret results.
โข Model Interpretation and Explainability: This unit will cover various model interpretation and explainability techniques like SHAP, LIME, and TreeExplainer. It will also discuss the importance of model interpretability in business decision making.
โข Evaluation in Natural Language Processing (NLP): This unit will focus on specific evaluation metrics and methodologies used in NLP, such as BLEU, NIST, METEOR, and ROUGE scores. It will also cover issues related to data bias and fairness in NLP evaluation.
โข Evaluation in Computer Vision: This unit will cover evaluation metrics and methodologies specific to computer vision, such as Intersection over Union (IoU), Mean Average Precision (mAP), and Object Detection Quality (ODQ) metrics. It will also discuss the challenges of evaluating models in real-world scenarios.
โข Evaluation in Time Series Analysis: This unit will cover evaluation metrics and methodologies specific to time series analysis, such as MAE, RMSE, and MAPE. It will also discuss the challenges of evaluating models in non-stationary and noisy environments.
โข Evaluation in Deep Learning: This unit will cover evaluation metrics and methodologies specific to deep learning, such as accuracy, precision, recall, F1 score, and ROC-AUC. It will also discuss the challenges of evaluating deep learning models and hyperparameter tuning techniques.
โข Evaluation in Reinforcement Learning: This unit will cover evaluation metrics and methodologies specific to reinforcement learning, such as return, discount
Trayectoria Profesional
Requisitos de Entrada
- Comprensiรณn bรกsica de la materia
- Competencia en idioma inglรฉs
- Acceso a computadora e internet
- Habilidades bรกsicas de computadora
- Dedicaciรณn para completar el curso
No se requieren calificaciones formales previas. El curso estรก diseรฑado para la accesibilidad.
Estado del Curso
Este curso proporciona conocimientos y habilidades prรกcticas para el desarrollo profesional. Es:
- No acreditado por un organismo reconocido
- No regulado por una instituciรณn autorizada
- Complementario a las calificaciones formales
Recibirรกs un certificado de finalizaciรณn al completar exitosamente el curso.
Por quรฉ la gente nos elige para su carrera
Cargando reseรฑas...
Preguntas Frecuentes
Tarifa del curso
- 3-4 horas por semana
- Entrega temprana del certificado
- Inscripciรณn abierta - comienza cuando quieras
- 2-3 horas por semana
- Entrega regular del certificado
- Inscripciรณn abierta - comienza cuando quieras
- Acceso completo al curso
- Certificado digital
- Materiales del curso
Obtener informaciรณn del curso
Obtener un certificado de carrera